Thermal energy Changes in thermal energy

Thermal energy and mass ($\Delta \vartheta = \text{constant}$) Universal physics measuring instrument

Object of the experiment

1. Investigate the relationship between the change in thermal energy and the mass of water at constant temperature

Setup

Settings for Joule and wattmeter:

- Use the *U*, *I*, *P* button to set the measured variable to be work and its value to 0.00 kWs.
- Press button *t* START/STOP such that the red LED comes on.
- If necessary, press the OUTPUT button so that the lefthand LED lights up (no voltage at plug socket).

Apparatus

1 Temperature sensor S, NTC	524 044
1 Universal physics measuring instrument	531 835
1 Immersion heater	303 25
1 Plastic beaker	590 06
1 Joule and wattmeter	531 831
1 Stand base, V-shaped, small	300 02
1 Stand rod, 25 cm, 12 mm diam	300 41
1 Universal clamp, 080 mm	666 555
1 Leybold multiclamp	301 01

Procedure

- Fill the measuring beaker with 0.6 kg (600 ml) of water.
- Determine the temperature of the water ϑ_0 .
- Start measuring by pressing the OUTPUT button of the combined Joule and wattmeter.
- While you are measuring, keep the water in the measuring beaker well stirred with the immersion heater.
- When the temperature has risen by about 9 K, stop the Joule and wattmeter measuring by pressing the OUTPUT button again.
- Stir the water in the beaker thoroughly again and wait until the temperature settles down to a constant level.
- Read off the measurements from the Joule and wattmeter and from the universal physics measuring instrument. Enter the results into the table.
- Set the display of the Joule and wattmeter back to zero by pressing the *t* START/STOP button twice.
- Now repeat the measurement with 0.8 kg (800 ml) and 1 kg (1000 ml).

- Plot a graph of the relationship between the supplied thermal energy ΔE and the mass of water *m*.

Measuring example

<i>m</i> in kg	ϑ_0 in °C	Գ in °C	*∆9 in K	* ∆ <i>E</i> in kJ
0.6	26.2	36.4	10	28
0.8	26.8	37.0	10	36
1.0	26.0	36.1	10	44

*Rounded values

The greater the mass of water, the larger the amount of thermal energy that needs to be supplied in order to obtain a constant rise in temperature. The following is true: $\Delta E \sim m$. Remark:

The proportionality demonstrated here only applies as long as the water remains in the same aggregate state.

